Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms.

نویسندگان

  • Pascal-Antoine Christin
  • Mónica Arakaki
  • Colin P Osborne
  • Erika J Edwards
چکیده

The evolutionary accessibility of novel adaptations varies among lineages, depending in part on the genetic elements present in each group. However, the factors determining the evolutionary potential of closely related genes remain largely unknown. In plants, CO2-concentrating mechanisms such as C4 and crassulacean acid metabolism (CAM) photosynthesis have evolved numerous times in distantly related groups of species, and constitute excellent systems to study constraints and enablers of evolution. It has been previously shown for multiple proteins that grasses preferentially co-opted the same gene lineage for C4 photosynthesis, when multiple copies were present. In this work, we use comparative transcriptomics to show that this bias also exists within Caryophyllales, a distantly related group with multiple C4 origins. However, the bias is not the same as in grasses and, when all angiosperms are considered jointly, the number of distinct gene lineages co-opted is not smaller than that expected by chance. These results show that most gene lineages present in the common ancestor of monocots and eudicots produced gene descendants that were recruited into C4 photosynthesis, but that C4-suitability changed during the diversification of angiosperms. When selective pressures drove C4 evolution, some copies were preferentially co-opted, probably because they already possessed C4-like expression patterns. However, the identity of these C4-suitable genes varies among clades of angiosperms, and C4 phenotypes in distant angiosperm groups thus represent genuinely independent realizations, based on different genetic precursors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of Trans-Factors in Two Independent Origins of C4 Photosynthesis

With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to w...

متن کامل

Using evolution as a guide to engineer kranz-type c4 photosynthesis

Kranz-type C4 photosynthesis has independently and rapidly evolved over 60 times to dramatically increase radiation use efficiency in both monocots and eudicots. Indeed, it is one of the most exceptional examples of convergent evolution in the history of life. The repeated and rapid evolution of Kranz-type C4 suggests that it may be a derivative of a conserved developmental pathway that is pres...

متن کامل

Parallel Recruitment of Multiple Genes into C4 Photosynthesis

During the diversification of living organisms, novel adaptive traits usually evolve through the co-option of preexisting genes. However, most enzymes are encoded by gene families, whose members vary in their expression and catalytic properties. Each may therefore differ in its suitability for recruitment into a novel function. In this work, we test for the presence of such a gene recruitment b...

متن کامل

The Differences between NAD-ME and NADP-ME Subtypes of C4 Photosynthesis: More than Decarboxylating Enzymes

As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities, and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 ar...

متن کامل

Anatomical enablers and the evolution of C4 photosynthesis in grasses.

C(4) photosynthesis is a series of anatomical and biochemical modifications to the typical C(3) pathway that increases the productivity of plants in warm, sunny, and dry conditions. Despite its complexity, it evolved more than 62 times independently in flowering plants. However, C(4) origins are absent from most plant lineages and clustered in others, suggesting that some characteristics increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 32 4  شماره 

صفحات  -

تاریخ انتشار 2015